鐵之狂傲
標題:
數論證明1(已解決)
[列印本頁]
作者:
傲月光希
時間:
07-9-5 11:38
標題:
數論證明1(已解決)
一篇回覆請回答一題,過程必須清楚,正確無誤者給予3枚聲望作獎勵
1.分兩小題,請利用第一數歸法,須完全證明便有獎勵
(a)1+3+5+...+(2n-1)=n^2,對所有正整數n。
(b)1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3,對所有正整數n。
2.請利用第二數歸法證明(a^n)-1=(a-1)[a^(n-1)+a^(n-2)+...+1],對所有正整數n。
[提示:已知a^(n+1)-1=(a+1)(a^n-1)-a(a^(n-1)-1)]
3.用數學歸納法證明1(1!)+2(2!)+...+n(n!)=(n+1)!-1,對所有正整數n。
[
本文最後由 傲月光希 於 07-9-22 01:10 PM 編輯
]
作者:
aeoexe
時間:
07-9-5 16:51
1.分兩小題,請利用第一數歸法,須完全證明便有獎勵
(a)1+3+5+...+(2n+1)=n^2,對所有正整數n。<- 懷疑出錯,如果n=1, L.H.S.=4,R.H.S.=1
(b)1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3,對所有正整數n。
(a)Let S(n) be the statement,'1+3+5+...+(2n-1)=n^2'for all natural no. n
When n=1 L.H.S.=1 R.H.S.=1^2=1 Therefore, S(1) is true.
Assume S(k) is true,i.e. 1+3+5+...+(2k-1)=k^2
When n=k+1,
L.H.S.=1+3+5+...+2k-1+2k+1
=k^2+2k+1
=(k+1)^2
=R.H.S.
Therefore,S(k+1) is true
By the principal of Mathematical Induction, S(n) is true for all positive integers n
(b) Let S(n) be the statement,'1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3'for all natural no. n
When n=1 L.H.S.=1*2=2 R.H.S.=1*2*3/3=2 Therefore, S(1) is true.
Assume S(k) is true,i.e. 1*2+2*3+...+k(k+1)=k(k+1)(k+2)/3
When n=k+1,
L.H.S.=1*2+2*3+....+k(k+1)+(k+1)(k+2)
=k(k+1)(k+2)/3+(k+1)(k+2)
=(k+1)(k+2)(k/3+1)
=(k+1)(k+2)(k+3)/3
=(k+1)[(k+1)+1][(k+1)+2]/3
=R.H.S.
Therefore,S(k+1) is true.
By the principal of Mathematical Induction, S(n) is true for all positive integers n
[
本文最後由 aeoexe 於 07-9-5 05:32 PM 編輯
]
作者:
aeoexe
時間:
07-9-5 16:56
3.用數學歸納法證明1(1!)+2(2!)+...+n(n!)=(n+1)!-1,對所有正整數n。
Let S(n) be the statement,'1(1!)+2(2!)+...+n(n!)=(n+1)!-1'for all natural no. n
When n=1, L.H.S.=1 R.H.S.=2!-1=1 Therefore, S(1) is true.
Assume S(k) is true,i.e. 1(1!)+2(2!)+...+k(k!)=(k+1)!-1
When n=k+1,
L.H.S.=1(1!)+2(2!)+...+k(k!)+(k+1)(k+1)!
=(k+1)!+(k+1)(k+1)!-1
=(k+2)(k+1)!-1
=(k+2)!-1
=[(k+1)+1]!-1
=R.H.S.
Therefore,S(k+1) is true.
By the principal of Mathematical Induction, S(n) is true for all positive integers n
[
本文最後由 aeoexe 於 07-9-5 05:32 PM 編輯
]
作者:
aeoexe
時間:
07-9-5 17:31
2.請利用第二數歸法證明(a^n)-1=(a-1)[a^(n-1)+a^(n-2)+...+1],對所有正整數n。
[提示:已知a^(n+1)-1=(a+1)(a^n-1)-a(a^(n-1)-1)]
Let S(n) be the statement,'(a^n)-1=(a-1)[a^(n-1)+a^(n-2)+...+1]'for all natural no. n
(1) When n=1, L.H.S.=a-1 R.H.S.=(a-1)(1) S(1)is true.
(2)Assume S(k) is true,When n=k+1,
L.H.S=a^(k+1)-1
=(a+1)(a^k-1)-a(a^(k-1)-1)
=(a+1)(a^k-1)-a^k-a
=(a-1)(a+1)[a^(k-1)+a^(k-2)+...+1]-a^k+a
=(a-1)[a^k+2a^(k-1)+2a^(k-2)+...+1]-a^k+a
=(a-1)[a^k+a^(k-1)+a^(k-2)+...+1]+(a-1)[a^(k-1)+a^(k-2)+...+a+1-1]-a^k+a
=(a-1)[a^k+a^(k-1)+a^(k-2)+...+1]+a^k-1-a+1-a^k+a
=(a-1)[a^k+a^(k-1)+a^(k-2)+...+1]
=R.H.S.
Therefore,S(k+1) is true.
By (1)(2) and the principal of Mathematical Induction, S(n) is true for all positive integers n
[
本文最後由 aeoexe 於 07-9-5 05:39 PM 編輯
]
歡迎光臨 鐵之狂傲 (https://gamez.com.tw/)