鐵之狂傲

標題: 請問一下關於向量應用的證明題~ [列印本頁]

作者: 帝國護衛    時間: 07-9-10 23:51
標題: 請問一下關於向量應用的證明題~
高二上學期的題目ˇ麻煩知道的人替我解惑 感謝^^

G是三角形ABC的重心,求證:
01.向量AG=1/3向量AB+1/3向量AC
02.向量GA+向量GB+向量GC=0向量
03.O為任意一點,向量OG=1/3向量OA+1/3向量OB+1/3向量OC

以上~麻煩各位了 對證明題真的很沒有方法ˊˋ
作者: turnX    時間: 07-9-11 00:54
01.向量AG=1/3向量AB+1/3向量AC

這解法不好,但蠻有效...設A點(x1,y1) , B點(x2,y2) , C點(x3,y3)
則G點 ( (x1+x2+x3)/3 , (y1+y2+y3)/3 )
AG向量=G點-A點= ( (x2+x3-2x1)/3 , (y2+y3-2y1)/3 )
AB向量=(x2-x1,y2-y1)
AC向量=(x3-x1,y3-y1)
AB向量+AC向量=(x2+x3-2x1,y2+y3-2y1)
1/3(AB向量+AC向量)=( (x2+x3-2x1)/3 , (y2+y3-2y1)/3 )=AG向量  得證

02.向量GA+向量GB+向量GC=0向量
對AB中點E延伸其中線CE,使得GE=EF
由於AE=EB,GE=EF使得AGBF為平行四邊形
向量CG=-向量GF
向量GA+向量GB=向量GF=-向量CG
向量GA+向量GB+向量CG=0


03.O為任意一點,向量OG=1/3向量OA+1/3向量OB+1/3向量OC

使用第一題的作法應該能證出
只不過令O點為(x4,y4)
向量OG=1/3向量OA+1/3向量OB+1/3向量OC=( (x1+x2+x3-3x4)/3 , (y1+y2+y3-3y4)/3 )
但是,不是個好方式就是


大概是這樣

[ 本文最後由 turnX 於 07-9-11 01:04 AM 編輯 ]
作者: cfc21    時間: 07-9-11 01:21
標題: 回覆 #1 帝國護衛 的文章
請點選連結看影音講解:大笑
163.32.74.12/cfc/960911/960911.html




歡迎光臨 鐵之狂傲 (https://gamez.com.tw/)