鐵之狂傲
標題:
不等式的應用題
[列印本頁]
作者:
coastd54703
時間:
07-10-2 22:29
標題:
不等式的應用題
題目都很長,請大大耐心看完....
1.有A,B兩種食品,
A食品含有:蛋白質6%,脂肪4%,及碳水化合物45%,
B食品含有:蛋白質18%,脂肪8%,及碳水化合物9%,
售價上,A食品每100g36元,而B食品每100g60元,
假設某人每天最少需要蛋白質90g,脂肪48g,及碳水化合物216g,
此人每天應該如何買這兩種食品,方能攝取足夠的營養而且花費最少?每天最少的話費是多少?
2.某公司有第一、第二兩座倉庫,第一倉庫現有存貨160件,第二倉庫現有存貨200件,
今接獲甲地訂購120件,乙地訂購160件,每件貨品的運費:由第一倉庫至甲地需250元,至乙地需350元;
由第二倉庫至甲地需300元,至乙地需375元,應如何運送,方能使全部運費最少?此一最少之運費多少?
像這種題目又長又看不大懂的不等式,該怎麼解?用方程式解呢?還是圖解會比較好算?
作者:
小魔
時間:
07-10-2 22:42
基本上這兩題並沒有很難…
你的問題是出在無法將文字轉換成數字…
像是第一題…
設A食品買x百克,B食品買y百克,總金額為M元…
可先列出以下四組方程式…
6x+18y≧90,蛋白質…
4x+8y≧48,脂肪…
45x+9y≧216,碳水化合物…
M=36x+60y,求M的最小值…
列式大概就是如此…
關於運算問題請多想多練…
不行的話再多觀摩…
數學版應該是來教你解題…
而不是幫你解題的地方唷…
歡迎光臨 鐵之狂傲 (https://gamez.com.tw/)