設比較短的分角線交AB於D
過B作AC平行線交CD延長線於E
因∠CEB=60°
則BE=3/根號3=根號3、CD=2*根號3
CD=2*根號3*4/(4+根號3)=(32*根號3-24)/13
即得所求作者: himitsuaile 時間: 09-5-3 09:50
高中 3
I try another way
Suppose for some p, q in Z+,
p/q = 1 + 1/2 + ... + 1/n,
then
p = n!(1+1/2+...+1/n) and
q = n!
p/q is an integer if and only if q divides p, i.e.
n! | n!(1+1/2+...+1/n).
This is so if
n!(1+1/2+...+1/n) = n! + 1*3*...*n + ... + (n-1)! ≡ 0 (mod k)
for k = 2, ..., n.
However, there exists the largest prime, say p', in {1, 2, ..., n}, such that in modulo p',
n!(1+1/2+...+1/n) ≡ 1*2*...*(p'-1)(p'+1) ... n (mod p')
which doesn't vanish, thus q does not divide p.