- 鐵幣
- 2765 元
- 文章
- 698 篇
- 聲望
- 385 枚
- 上次登入
- 11-3-28
- 精華
- 0
- 註冊時間
- 05-2-15
- UID
- 110237
|
國中,高中3.
將等式兩邊乘上2abc,
得:a(b^2+c^2-a^2)+c(a^2+b^2-c^2)+b(a^2+c^2-b^2)=2abc
再移項加因式分解,可以得出(a+b-c)(b+c-a)(a+c-b)=0
即a+b-c=0 或 b+c-a=0 或 a+c-b=0
如果a+b-c=0
a+b=c => (a+b)^2=c^2 => a^2+b^2=c^2-2ab => (a^2+b^2-c^2)/2ab=-1
=> b=c-a => b^2=c^2+a^2-2ac => a^2+c^2-b^2=2ac => (a^2+c^2-b^2)/2ac=1
=> a=c-b => a^2=c^2+b^2-2bc => b^2+c^2-a^2=2bc =>(b^2+c^2-a^2)/2bc=1
同理,可得三種情況下,(a^2+b^2-c^2)/2ab,(a^2+c^2-b^2)/2ac,(b^2+c^2-a^2)/2bc,其中一個必等於-1,另外兩個必等於1,故得証 |
|