- 鐵幣
- 2765 元
- 文章
- 698 篇
- 聲望
- 385 枚
- 上次登入
- 11-3-28
- 精華
- 0
- 註冊時間
- 05-2-15
- UID
- 110237
|
1.分兩小題,請利用第一數歸法,須完全證明便有獎勵
(a)1+3+5+...+(2n+1)=n^2,對所有正整數n。<- 懷疑出錯,如果n=1, L.H.S.=4,R.H.S.=1
(b)1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3,對所有正整數n。
(a)Let S(n) be the statement,'1+3+5+...+(2n-1)=n^2'for all natural no. n
When n=1 L.H.S.=1 R.H.S.=1^2=1 Therefore, S(1) is true.
Assume S(k) is true,i.e. 1+3+5+...+(2k-1)=k^2
When n=k+1,
L.H.S.=1+3+5+...+2k-1+2k+1
=k^2+2k+1
=(k+1)^2
=R.H.S.
Therefore,S(k+1) is true
By the principal of Mathematical Induction, S(n) is true for all positive integers n
(b) Let S(n) be the statement,'1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3'for all natural no. n
When n=1 L.H.S.=1*2=2 R.H.S.=1*2*3/3=2 Therefore, S(1) is true.
Assume S(k) is true,i.e. 1*2+2*3+...+k(k+1)=k(k+1)(k+2)/3
When n=k+1,
L.H.S.=1*2+2*3+....+k(k+1)+(k+1)(k+2)
=k(k+1)(k+2)/3+(k+1)(k+2)
=(k+1)(k+2)(k/3+1)
=(k+1)(k+2)(k+3)/3
=(k+1)[(k+1)+1][(k+1)+2]/3
=R.H.S.
Therefore,S(k+1) is true.
By the principal of Mathematical Induction, S(n) is true for all positive integers n
[ 本文最後由 aeoexe 於 07-9-5 05:32 PM 編輯 ] |
|