- 鐵幣
- 1885 元
- 文章
- 1396 篇
- 聲望
- 1332 枚
- 上次登入
- 15-11-14
- 精華
- 3
- 註冊時間
- 06-7-21
- UID
- 284795
|
個人賽 第7題
Since y=(3x-10)(2x+11)=6x^2+13x-110,the circle passes through A(0,-110),B(10/3,0),C(-11/2,0).
First,the the perpendicular bisector(中垂線) of line AB must pass the center of the circle,so the x-coordinate of the middle point of line AB must be the same as that of the circle center.
(10/3,0)+(-11/2,0)
------------------ =(-13/12,0).
2
Second,we set the fourth point passed through by the circle on the y-axis D(0,a).
The the perpendicular bisector of line AD must pass through the center,too.So the y-coordinate of the middle point is also the same as that of the center point.
(0.a)+(0,-110)
-------------- =(0,(a-110)/2).
2
Thus,we have the center point of the circle (-13/12,(a-110)/2).
Let the radius be r.Then r^2=(-13/12-10/3)^2+[(a-110)/2-0]^2=(-13/12-0)^2+[(a-110)/2+110]^2
=> 2*(-13/12)*(-10/3)+(10/3)^2=2*110*[(a-110)/2]+110^2
=> 65/9+100/9=110a-110^2+110^2
=> 110a=165/9
=> a=(165/9)*(1/110)=1/6
Therefore,the fourth point is (0,1/6). |
|