- 鐵幣
- 9 元
- 文章
- 8 篇
- 聲望
- 10 枚
- 上次登入
- 09-8-21
- 精華
- 0
- 註冊時間
- 07-6-29
- UID
- 407111
|
高中 3
I try another way
Suppose for some p, q in Z+,
p/q = 1 + 1/2 + ... + 1/n,
then
p = n!(1+1/2+...+1/n) and
q = n!
p/q is an integer if and only if q divides p, i.e.
n! | n!(1+1/2+...+1/n).
This is so if
n!(1+1/2+...+1/n) = n! + 1*3*...*n + ... + (n-1)! ≡ 0 (mod k)
for k = 2, ..., n.
However, there exists the largest prime, say p', in {1, 2, ..., n}, such that in modulo p',
n!(1+1/2+...+1/n) ≡ 1*2*...*(p'-1)(p'+1) ... n (mod p')
which doesn't vanish, thus q does not divide p. |
|