- 鐵幣
 - 2120 元
 - 文章
 - 65 篇
 - 聲望
 - 197 枚
 - 上次登入
 - 07-9-26
 - 精華
 - 0
 - 註冊時間
 - 07-7-16
 - UID
 - 418653
  
 
 
 
            
 | 
    
        
        
回覆 #1 M.N.M. 的文章
47, 
If m=n=1 and we know f(m+n)-f(m)-f(n)=0or1,andf(2)=0 
We get 0=f(2)=2f(1)+0(or1) 
f(1)>=0,so f(1)=0 
If m=2, n=1, we have f(3)=f(2)+f(1)+0or1=0or1. 
but we know that f(3)>0, so f(3)=1 
We can claim that f(3k)=k (k is a natural number, andk<3333) 
Acrodding to  f(m+n)-f(m)-f(n)=0or1,  
f(3k)=f(3(k-1)+3)>=f(3(k-1))+f(3) 
so, f(6)=f(3*2)>=2f(3)=2 
if we have f(3m-3)>=m-1, we get f(3m)=f(3(m-1)+3)>=f(3(m-1))+f(3)>=(m-1)+1=m 
Acrodding to Mathematical Induction, we can easily learn that f(3m)>=m (m>=2) 
so, if there exisits a k, k<3333 such that f(3k)>k 
then f(3k)>=k+1 and we also have f(9999)>=f(9999-3k)+f(3k) 
>=(3333-k)+k+1=3334>3333 
This is impossible, cause we've already known f(9999)=3333 
 
so,  
1982=3*660+2, f(1)=0, f(2)=0, f(m+n)-f(m)-f(n)=0or1 and f(3k)=k, 
let m=1982, n=1 
we get 661=f(3*661)-f(1)>=f(1982)=f(3*660+2) >=f(3*660)+f(2)=660 
9999=1982*5+89, 
if f(1982)=661, 
f(9999)=f(1982*5+89)>=5f(1982)+f(89)=5*661+f(89)=3305+f(89)>=3305+f(87)+f(2) 
=3305+29=3334>3333 
That's impossible, so f(1982)=660 |   
 
                                      
         
     
 |